
martens
Sticky Note
as in "the cake is a lie"https://en.wikipedia.org/wiki/Portal_(video_game)#Plot



martens
Sticky Note
It's about both, because in my experience, the way you plan how to test your software, can indeed drive the design of your software and always influences it in some way.



martens
Sticky Note
Talk: https://skillsmatter.com/skillscasts/5899-modelling-by-example#videoBlog: http://everzet.com/post/99045129766/introducing-modelling-by-example



martens
Sticky Note
I also can be hired =)More info: http://rtens.org



martens
Sticky Note
I assume that you are already a big fan of automated tests but maybe it hasn't worked out very well so far.



martens
Sticky Note
Even if you are doing automated testing, there is still the question of the "right" testing level. There is quite a number to choose from on a whole scale.I'll call the extremes of this scale "integration" and "unit" levels. You probably call the differently.



martens
Sticky Note
There is no apparent agreement yet on what is the optimal testing strategy.

martens
Sticky Note
Two rather emotional participants of the discussion arehttp://www.infoq.com/presentations/integration-tests-scamand http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html

martens
Sticky Note
What David call "TDD", I'd call "unit-level testing"



martens
Sticky Note
Because everybody understands something else, I'll define what I mean by "integration" and "unit" testing.









martens
Sticky Note
At this point I collected pros and cons of each approach from the audience. These included- execution time- flakiness- control- feedback cycle time- connection between test and value- coupling with implementation



martens
Sticky Note
In the end is all about confidence. Ideally, a passing test suite should give you enough confidence to deploy the system without hesitating.



martens
Sticky Note
Because the strengths and weaknesses of each approach seem to be complimentary, a common approach is to mix them. And since unit tests are so much cheaper, it is a common practice to have more of them than higher level tests.

martens
Sticky Note
Following this model, you still have the choice of starting with the unit level and gradually integrating modules, or doing it the other way around: starting with the UI layer and fleshing out the underlying system.



martens
Sticky Note
After I've been using this approach for a couple of years I encountered two main problems.

martens
Sticky Note
Because tests for a certain feature are written on at least two different levels, changing the feature requires adapting redundant tests. The more layers, the worse. This results in discouraging the practice.

martens
Sticky Note
Another problem is a missing connection between tests on the unit level and the feature that requires these tests. If a unit test fails, it's often times unclear if the specification changed or the code broke. And even if the latter, if that's significant.



martens
Sticky Note
As a result, I started to do less and less integration and unit testing and started to put more emphasis on the service layer.



martens
Sticky Note
This turned out to be highly advantageous since it combined fast execution and feedback time with a close connection to the actual feature.



martens
Sticky Note
And by using ubiquitous language, I could even use these service layer tests as a communication tool with the business stakeholders.



martens
Sticky Note
This means that I started with implementing the service layer, and from there went both up and down, adding infrastructure as needed.



martens
Sticky Note
The emphasis on the service layer naturally leads to something resembling hexagonal architecture.The other big advantage is that you are able to discuss and explore the Domain before having to build and design the infrastructure.



martens
Sticky Note
Since the feature is described in ubiquitous language and thus independent of the implementation, you can choose to either implement it on any level. You can even first do it on one level and later on the other.





martens
Sticky Note
Having implementations of the same specification on multiple levels allows you to execute the specification with a desired degree of speed or confidence, depending on the situation.For example while working on the domain model, you are not interested in the infrastructure and feedback time is the most important thing so you'd execute the spec with maximum speed.But before deployment, you'd like to know that everything still works together properly and you don't mind to wait a couple of minutes.



martens
Sticky Note
You can implement this approach with several testing systems.



martens
Sticky Note
If you are using PhpUnit, you can use data providers to inject different implementations of a "driver" interface.









martens
Sticky Note
https://www.youtube.com/watch?v=WpkDN78P884

martens
Sticky Note
http://everzet.com/post/99045129766/introducing-modelling-by-example

martens
Sticky Note
http://rtens.org/




